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Background 

In 1962 I joined the London University Institute of Computer Science as an enthusiastic 
young research assistant. My appointment was linked to the impending arrival of the 
London Atlas and the perceived need by the senior staff, especially Dick Buckingham and 
Mike Bernal, for a suitable high-level language to support the development of a wider range 
of applications. Two teams were already working on language designs at the Institute and I 
chose to join the one working with a larger Cambridge team led by Christopher Strachey on 
the design of the CPL programming language [7]. A preliminary specification for the 
language had emerged in the form of several notes and it was suggested that I look into the 
construction of a compiler. The story of the CPL project and its eventual demise has 
recently been documented in David Hartley's excellent retrospective article [1].  

I came to the project with some industrial programming experience but absolutely no 
knowledge of compiler construction. None of my colleagues was better-placed for the task 
of constructing a CPL compiler, so I scanned the horizon and the Compiler Compiler 
popped up – a revelation that was to have a major impact on my early professional life. (I 
have a recollection of attending a talk given in London by Tony Brooker at about that time, 
but cannot say whether that was the source of my first knowledge of the Compiler Compiler 
(henceforth abbreviated as CC). Publications by Brooker and his colleagues on the CC were 
yet to appear [5, 6]).  

Textbooks on compiler construction - and indeed on most topics in computing - were non-
existent at that time. (Don Knuth is reported [2] to have begun to write a book on compiler 
construction in 1962, only to realise that it would leave too many related important topics 
undiscussed - so he transformed the project into his epic 'Art of Computer Programming'.) 
But with the help of Tony Brooker and Derrick Morris's concise but instructive 
documentation and especially their examples, I was able to infer most of the relevant 
principles and get started on a project that was to occupy me for about two years.  

The Compiler Compiler was an early but outstanding example of a domain-specific 
language. At their best, domain-specific languages give users a clear model of the 
application domain and a framework enabling them to get started with exploring 
implementation approaches, converging to a fully working implementation.  

The construction of a top-down syntax-driven compiler is now well understood, but for me 
and probably quite a few others in those early years the CC provided the necessary 
understanding. One of those was Saul Rosen of Purdue University, who later wrote an 
excellent tutorial survey of the CC published in the Communications of the ACM in 1964 
[3]. (That was well after my need to understand and use the compiler so I was unable to 
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benefit from his efforts. But I have used his survey to refresh my memory for the brief 
summary of selected aspects below.) 

Some interesting aspects of the CC 

To build a compiler for a new language, one began by defining the syntax as a set of format 
class definitions in a notation that would now be recognised as a homologue of the 
Extended Backus–Naur notation. The notation was very well-conceived; it was easy to learn 
and apply and the CC included sufficient low-level primitives (called basic formats) to 
enable such things as numbers, variable names and so on to be efficiently recognised.  

An analysis routine built-in to the CC would process a source program according to the 
given class definitions and generate an analysis record denoting the syntax tree for the 
source program in terms of the syntax supplied. The remaining and more difficult task of the 
compiler writer was to write a set of format routines that would generate executable code 
corresponding to the statements recognised in the source program. In the case of our CPL 
compiler we were aiming to generate Atlas assembly code - the use of byte code virtual 
machines as compiler targets was some years away.  

The construction of format routines to perform the code generation was a classic system 
programming task requiring a deep and detail understanding of the target machine's 
architecture and several key data structures for use as symbol tables, memory maps and so 
on. The most surprising thing about the Compiler Compiler was that Tony Brooker and 
Derrick Morris had already encountered the requirements in the process of building the CC 
(and presumably in their earlier efforts to build compilers for other machines), and they had 
formulated good generalised representations for them.  

Thus the notation used for writing format routines was essentially a system programming 
language of the same class as BCPL, C and so on. The CC was perhaps the first machine-
independent language to explicitly include the notions of memory address, memory word, 
address arithmetic and indirection. Format routines were in fact executable analysis records. 
When a CC format routine was processed by the analysis routine the result was an 
executable tree structure containing references to other routines and markers denoting the 
parameters remaining to be inserted. To execute a routine a copy of its analysis record was 
made in a working area of memory similar to an execution stack and when values for all of 
the parameters have been substituted it is executed. This strongly analogous to modern 
interpretive language execution mechanisms. But Brooker and Morris were not content to 
leave all of the routines to be executed in the interpretive mode. They included a mechanism 
to translate format routines that did not contain parameters into assembly code for direct 
execution and this much improved the systems performance. 

The CPL1 compiler 

Work on a CPL compiler, dubbed the 'London CPL1 Compiler' began in mid-1963 and a 
working version was released in the autumn of 1964. Initial debugging of syntax class 
definitions and an understanding of the format routine language were achieved well before 
the London Atlas had been delivered and commissioned through several visits to 
Manchester in the autumn of 1963, where the prototype Atlas was already available for use. 
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Advice and tuition were freely and generously given by Derrick Morris - something I found 
essential to gaining an understanding of the workings of the CC.  

The London CPL1 Compiler was restricted in two ways. 

1. Program size was restricted to a couple of hundred lines. 

 The nested block structure of CPL necessitated the analysis and initial processing of an 
entire source program before any code could be generated. Two-pass compilation 
would of course have been possible but would probably have required operator 
intervention, since we were still in the era of serial input devices. In retrospect, we 
ought to have bitten that bullet. 

2. It had some semantic restrictions compared to the full CPL language.  

  String variables and operations on them were implemented, but without the garbage 
collection that would have made them more effective and useful. Function closures 
were a pioneering feature of CPL that I fully appreciated only in the closing stages of 
the project (through informal interactions with Peter Landin at the legendary 'Mervyn 
Pragnell logic study group' that was running contemporaneously at the Institute). I 
failed to understand them sufficiently well to define an effective implementation. 

Despite those restrictions the compiler enabled a small number of users to experience some 
of the benefits of CPL – a block structured procedural language with more extensive support 
for non-numeric data, functions and procedures than any other contemporary language. A 
paper on the London CPL1 compiler project, illustrated with some CC code fragments, was 
written and published in the Computer Journal in 1968 [4]. 

Reflections 

The Compiler Compiler was remarkable in many ways. I still find it a quite amazing 
achievement in terms of the innovations that it contained and the effectiveness of its design 
and implementation. It encompassed innovative contributions at so many levels, from the 
very concept of a compiler-compiler to the inclusion of a domain-specific language for 
applications in system programming and the combination of interpretation with code 
generation. 

Its implementation was completed at a time when we had virtually no debugging tools, with 
only paper tape for inputting programs, no file storage and certainly no capability for 
interactive debugging or user interaction. What a tour de force! 
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